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In the propagation of acoustic waves in a half space which is filled with a
fluld and 1s covered by an elastic layer, diffraction phenomena arise at
inhomogeneities of the layer. These phenomena may be amplified in a reso-
nant manner or attenuated depending on the relative locations of the objects
causing the diffraction.

In this paper resonance is examined for the simplest system of the type
described: the fluid 1s covered by & homogeneous elastic plate which 1s
divided into three parts by two stralght, parallel cracks of infinitesimal
thickness. The incident disturbance is given in the form of a plane mono-
chromatic wave.

In Section 1 a "general" soclution {according to the terminclogy of [1])
is given for the problem of diffraction for any number of defects of arbi-
trary nature in the plate which are located on parallel straight lines, The
diffracted field is found in Section 2 for the casc of two cracks and asymp-
totic simplifications are carrled out for low frequencles and large separa-
tion of the cracks. In Section 3 the resonant character of the diffraction
phenomena 1s established for a system of thls type.

Notation

U - acoustic potential in the ¢, — velocity of transverse waves 1in
fluid plate material
W — diffracted part of the ¥ = plate thickness
acoustic potential ¥ - dimensionless wave number in the
e - Poisson's ratio for the fluid {(x = 2ng/A)

plate material A — wave length in the fluid

p — fluld denslty wo — angle at which the incident wave
Po density of the plate moves (measured from the posi-
material tive direction of the Qx-axis)

wave velocity in the fluld
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Resonance phenomenon in the diffraction of & hydroacoustic wave 507

1., An ideal compressible fluid fills a half space which 1s covered by an
elastic plate. There are certain number of parallel rectilinear slits in
the plate. A plane monochromatic wave is incident from the depths of the
fluid; the direction of motion of the wave 1s orthogonal to the directlon
of the slits. It is required to find the fleld crested by the wave.

With a proper choice of coordinate axes (Fig.1) this problem is a two-
dimensional one. Its mathematical formulation is as follows [1 and 2].

1t is required to find the solution of the Helmholtz equation

oy o 2
o T THU=0 (—o0 Lz L+ 00, 0y < + o0) (1.1)
which is continuous throughout up to the x-axis., On the x-axls 1t 1s assumed
that the following boundary condition 1s satisfied:
m 4

_ U (2,0 20U (2,0 s
LU =250 — s B0 4 e (2, 0) = 3] N 4w (2 —ar) (1.2)

n=]1 $=1
Here

2 2
8 =601 —o0)—> ve =61 — a) &
0 ( ) PR 0 ( 0) poc
where m 18 the number of cracks, &, 1s the x-coordinate of the nth crack,
and 8(x) 1s the Dirac delta function. The constants 4,, are such that
the boundary-contact relations

U (2, 0) .0 (2,0)
lim ———-— By 0, lim—pgrm gy = 0
for z—a,40 (n=1,...,m) (1.3)
hold.

Moreover, the difference U — U, ,
¥here U, = exp (ixz — iV * —xty)
(% = — k cos o) (1.4)

must satisfy the principle of limiting absorption. The quantitles x and
y are considered to be dimensionless. The transformation to x and y
from the corresponding dimensional quantities is accomplished by dividing
by the thickness #J on the plate.

The boundary condition (1.2) requires explanation inasmuch as the expres~
sion used for its right side has not been employed ‘before. In the formula-
tion of the corresponding problem [2] for a single crack located at x = 0
the boundary conditionsn%using the notation of the present paper) had the
form

LU =0 (x 5 0)

The wave field which was found as a result of solving the problem was
written 1n the following manner:
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U:UQ+U1+W, L(U’O‘:T“U’]):O
oo

—— \ ah? -+ bA2 4 ch - d

i 3 (8 — o) V k2 =A% — ivgh?

exp (idx - i ¥ k2= A%y)dh

Applying the operator I and @ we arrive at Equation
LU = LW = ib8"" (z) — b8" (z) — icd’ (z) -} db (x)
which coincides with (1.2) for m = 1 and g, = 0 except for the notation
of the constants.

It is natural to consider that the character of the singularity of Ly
at a crack 1s not altered by the presence of other defects in the plate which
are 1solated from the crack.

By direct verification it is easy to demostrate that the solution of the
problem which has been posed has the following form

U=U,+ U +W (1.5)
where
U, =" exp (ixz + i VB — 1Y) 1.() = (14— bokt) Y F—R— ivut?) (1.6)
1 T G _ia 4 PR . R e
WzmSTWEV ™S Ay (M) exp (ihz + iV = M) dh (1.7)
—00 n==] s=]

Here U, represents the wave which 1is reflected from the plate, w 1is
the diffracted field which 1s caused by the presence of the cracks in the
plate, I* is the complex conjugate of ] . The choice of the branch of
1{)) is clear from Fig. 2, where the solid line denotes the contour of inte-

gration and the dashed lines are cuts
i A, in the complex plane A . The radical
: * }/A? — A% 1s taken as positive on
i the segment of the real axis (—%, k).
I The numbers =14, {8 = 0, 1, 2, 3, 4)
: are the roots of the funetion 1()\);
N P —— their distribution is described in [2].
Red Only those roots of 1(A) which lie on
the sheet of the Riemann surface which
is considered are deplicted in Fig. 2.

-A, ImA 4

. It should he noted that the general
solution given by Formulas (1.5), (1.%),
1.6) and %1.7) is valid for finding the
Fig. 2 field in the predence of any disturb-
ances in the mechanical propertles of
the plate at the points x = & {e.g. hinged connections, see [3]), and not
only for the case of cracks, Fhe physical behavior at x = g, is taken into
account by the boundary-contact conditions. Therefore, before the relations
(1.3) are introduced, the solution which has been written out has a universal
character in the sense indicated.

Conditions (1.3) generate an inhomogeneous system of U4m linear equations
for finding the 4m unknown constants 4,, . On physical grounds 1t may be
assumed that this system has a unique solutlon for any x . Computations

1)
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will be given below corresponding to the case of two cracks.

2. We shall denote the distance between the cracks by 2a (as before,
the transformation to the dimensionless distance 1s accomplished by divi-
ding by 4 ) and we shall place the origin of coordinates at the center of
the segment between the cracks. The expression for the diffracted field has
the form . © . .

W=t S m)[e““" S A (i)
—00 s=1
. 4
+ €73 A, (m)*‘l] exp (iAx + VIF — Aly) di (2.1)
=1

We now split the wave field U and 1lts components [,, U; and ¥ into

their symmetric and antisymmetric parts wilth respect to the varlable x

Ui=Ud+ U, US(z,9) =" Ui(z,y) £Ui(—z,9] 22)

The problem of finding the diffracted fleld 1s thereby divided into two
problems, one for-each part. Only four constants will occur in each of these
problems. With this breakdown the components of the fleld have the form

Ut - {cos xE }e—iVF—T'y’ Ut — I* (%) {005 "x}ei = (2.3)

i sin xz L (») \isinunz
[ee]
e 4 € bbby L by¥AI - bEAS [cos Az . P —
Wt:f&};xl 2**&;} + b {i“'g;;w}exp(zxa+ng3-..xzy)d;\
—00

Here and in what follows, the upper line in the expressions in braces
should be used for the symmetrlc part of the field and the lower line for
the antlisymmetric part. Analogously, in using the double signs the upper
one refers to the symmetric part of the field, the lower to the antisymmetric
part.

In the process of satisfying the boundary-contact conditions it 1s neces-
sary to carry out differentlation under the integral slgn in the expression
for W+ . After this 1s done and y goes to zero, divergent integrals
result, the use of which is justified in [1].

After some simple computations analogous to those described in [2], it is
possible to arrive at the system

(Qet Py) byt + Qsby* + (Quk Py) byt + Qy byt = {icsoisna:za
Pyt + Pt = 0 (2.4)
Qsb* + (QuF P byt + Qubst + (Qs ¥ Py) by = nBfisin
Pgby* + Pyt = 0

where
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1 T aryE—R 1 TNV E=E
Po= o (| BV Eeman, Qo= o | YT ear

4n T(h) 4n T(x)
—00 ()
2wk VR — e =
B= R 7 (2.5)
Here the following abbreviated notation is used
\ f () erdh = hm S f (A) > dh
w—CX) -—oo

An asymptotic approximation of the solution of the system (2.4) will be
obtained for k<« 1. This inequality serves as the condition for the possibility
of treating an elastic layer on the surface of the fluid as a plate. There~
fore, the leadling term of the asymptotic expansion of ¥ in the small para-
meter k determines to a considerable extent the behavior of the diffracted
field when the model is physically reasonable and for sufficlently small x
it practically coincides with the actual diffracted field, The parameter a,
in addition to k , also plays an essential role in the representation which
will be obtained below. We remark that the presence in the problem of a
characteristic linear dimension which is comparable to the wave length (it
1s just thls case for the distance between cracks, which presents the great-
est interest) does not permit us to consider the asymptotic solutlion sought
as a long-wave one 1n the usual sense,.

In (2.5) we perform the change of variable A = v,2k" p and obtain

n-3 2(n-3)

ns B G Tt (20
P, = Vo 5 kg b Py p,= P \ (H-‘ __ ak’/.) (P Tk'/s)'/:.__ 1
—00 (n=2,3,4,35,6)
n-3 2(n-3) 2 */s Y gt
n-3 1 — 1k /s \ '/ V¥ g,
Qn = V4 5 k 8 9 g, = Aiv S P’ @ ) = (26)
—oo

ak’l‘) (pg R Tk‘/s )‘fx —1q

where
F=2avhkh, =8z, = v, VpE —yEs>0 (2.7)
for 1 > T‘/z k’/s

The integrals for p, can be expressed in terms of elementary functions
with the aid of calculations similar to those described in [2]. From these

we obtain

™ (s> — 1K)
Ponyy = 4 2 5» 4"‘493 1k i qkls (r=1,2)
p 1 j p’szn—l (p‘sg - Tk‘h) ( n!'l's + (""32 s Tk./s );/2 = g “I_I—)
on 9 . oA AR P
an 2n = 5”’84 . 4}L32Tk 2y Xl Y fel

(n=1, 2, 3) (2.8)

where u, {8 = 0, 1, 2, 3, 4) are roots of the equation
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(‘1,‘4 — ak’/&)g (}1«32 — Tk‘/s) _— i — 0’ Volh fg’/lp,s = ;;s
The choice of the branch of the logarithm is fixed by the requirements
0 ImInN < 2n, Reln N >0

There is & Taylor expansion for y, in powers of A's in the form
2mis 4mis gnis 8nis
He=e 3 -} Laknes — Latknes + (i o 7) Erse s ... (2.9
b} 25 125 10

On the basis of Formulas (2.8) and (2.9) it may easily be concluded that
DPausn 18 expandable in a Taylor serles in Integral powers of »* and that pg
is expressible in the form of a specific expansion in which 1nx and powers
of k' occur,

The actual computations lead to the result
ps = +O(K), p,= 0 (k)
== {1 —exp [y mi @n — N+ O  (n=1,23  (2.40)

From (2.10) and homogeneous equalities of the system (2.4) it is easy to
ascertaln that the constants b+, b,+ &are of high order in x and do not
contribute to the first term of the asymptptic representation for ¥ . In
this sense the system {2.4) may be reduced and, taking account of the obvious
asymptotlc simplifications of the right-hand sides, we may rewrlte it in the
O QU PY b+ O, by = 20k cost gy sin g, 5

i sin xa
Qsbs* + (Qs F Pg) byr = 0 (2.11)
We deform the contour of integration for g4, into & loop which surrounds
the upper branch cut and reduce the integral along this entire path to one,
on only the right edge of the cut. If account is taken of the residues at
the poles ,, y; — 4 Which are crossed as the contour is deformed it 1s
easy to obtain expression for g, which does not contain a divergent integ-

ral gnd which is convenient for finding the necessary asymptotic represen-
tations.

(2.12)
AL ) 2 gty oitig f Y2k s tico . .
g, = ‘17 2 LN - (ng i 7.1/‘/ Je :‘:/ _‘)1_ p"n (u2 — K /s )‘/: ife dy
g i tr—tt St — 4 Syk s — ak =7 . (= ak'se (W2 — Th"8)—1
{33 1y w4 ¥ /’k /5
(n=2,3,4,5,86)

The form of the asymptotlic representation for g, depends strongly on the
magnitude of the parameter 7 .

By virtue of the fact that the relation

Ao = Volskng = v Yok
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holds for the dimensionless wave rimmber Ap of the iexural weve [eae {2.9)},
the paremeter f 1s apbroxismalily equal to aw times the vaslo of the dis-
tence betecen The ordcies to the langth of the flexurdl wave. (The ezect
value of this exppassion will heresfter be denoted by 7 ).

Paing 7 lor 7, which 13 squivelent} zs a large purameter ol the prob-
Zer, We zan deaduce BEqusblon

i 4F 7, 1 T«
?-n - Il'j" ] u‘I“' G (k ! ) ) 1‘“ {) ( F"+E—) (.P — zﬂ?v“ ] f“,“:l (2.13)
or: the basls of {2,9) and {z.17).

iff the exsct velue of @ In tBls sguation i3 ropimzes Ly the first
terms of The series, an sdditional error & {(zk f‘w’”?j results.

®hen ¢ 1s rot & large number, Formula

I

Qﬁ . q%_{zif%. X {:im {ﬁ —_ 3} "L" g}fg‘f;ﬂ}

- QXP L}-EE {?2 o 3) + fef-“ﬂ} S 0.4 1‘}"*/7 dr -+ ﬁ(‘!‘%} (2‘14)

3
holds .

¥e noW THrm S0 the o8ss when F iz lsrge. Solving the system {2.13} and
taRxing account of the asymptotic equelities {2.10) and {2.13), we arrive at
Ehe foilowlng values for the unknown tonstants:
Wy

byt = 20 sin - h3 e eos Gom o 2 M1 {aaawa | cos® qasin gk "

T T enUinE e W lsinne] o
- 2.153
R #¥ ena 040 205 %4 § cos go sin gok T
= P X Go $I1
byt = +20 § sin -2 —p e b n ok
sos i e Yo

Ruations (1.5), (2.2} and {2.15) (togetner with the fact that 2, &, bax0)
conebitute the spiution of the probleést whiesh hoe Desn stated, for the asympe-
tothie siftusticr tohaifered, This solubtion iIs studied Deiow with the aim of

obtaining its physicel consequences.

4, 'fme main components of the aiffracted ffeld K under atudy sre a
eylindrical wave #, and two surfege waves, one of which (the dirsct wave
¥,) moves in the direction of incressing soordinate x , and the other ane
{the reverss wave # ) ¥vhich moves in the cposite dlrection, We shall agres
to use mubseripts in the designation of these waves; the supersuripts piua
and minud Will be retained for denoting the even and odd parts of the field
and 1te components. We alac introduce the superseript © with which we
shall denote elements of the wave fi2ld for the problem of aiffractien due
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to a single crack, as solved in [2]. The ratlo of two corresponding ele-
ments of the wave fleld for the present problem and the problem with one
crack willbe called an "influence function" and will be denoted by &

An influence function shows how the presence of the second crack affects
the amplitude and phase of the corresponding wave phenomenon.

In what follows, the expression for the diffracted field will be taken as
W= W+-+|+ W (3.1)
(oo} . .
wt = L0 POt 4 W) P (b tR — bR
4ni (W)

—00

exp (idx -+ iV EE—A%y) dhr

The direct surface wave W, 1s extracted from (3.1) by taking the resildue
of the integrand at X = i, . After some calculations we have

iF __ ,-0.2in
W, = — 2i(01%-0.5F) gip z { - ¢ —° 57 €0S xa +
5 et cos0.1n— e
iF —0.2in T cos? i *s
e e - cos? o sin qok ;
PR _ isin ,w} COS” Qo SIN Qo 7 pidee-Aw (3.2)
ef cos0.4m - 737 v’

The expression for the direct surface wave W,° 1ln the case of a single
crack can be written in the form [2]

ix s T cos®@osin okt
W,o = = peas sin L 08B gkl o, (.3

Comparing Equations (3.2) and (3.3) we arrive at the following expression
for the influence function for the direct surface wave:

iF ~0.2i%
R+ = e¢~1(0.5F+0.1m) {;__e__— ¢0s (ka cos Qo) —
#iF cos0. 45 — 7037

e‘lF + o~ 0-2i%

— — i sin (ka cos (po)} (3.4)

e'F cos0.47 + £70-3"

As is apparent from (3.%), the function R, depends periodically on two
arguments: the distance between cracks measured in wave lengths of the
flexural wave (the parameter § ) and the phase difference of the incident
wave at the left and right cracks (the parameter kg cos g, ). As a result
of this, the absolute value of R, undergoes considerable oscillation.

As an illustration let us examine the case when the phase shift of the
incident wave between the cracks 1s negligibly small or else is a multiple
of on

ka cos @, = 2sn
Then Po

eiF — g 0-2in
R = e-(0.5F+0.1m) -
* e'F cos0.ix — 03"

(3.5)
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and R, goes to zero for 7 = —0.2nm+ 2nn

Let us denote the dimensionless length of the flexural wave by l, . In
the approximation under study it has been found that for

2a _ 1

s 10
the direct surface wave disapears completely. It is curious that quenching
of the direct surface wave 1s obtalned for a nonintegral number of flexural
waves (n — 0.1) distributed in the interval between cracks.

(ka cos go = 2s;, n, s are integers) (3.6)

The modulus of the influence function R, attains 1its maximum near points
where the modulus of the denominator is smallest. This maximum is approxi-
mately equal to seven. In other words, the presence of the second cra&ck when

%’iz n— -2% (kacos o = 2sm; n, s are integers) (3.7)
0

causes an approximately sevenfold amplification in the amplitude of the di-
rect surface wave,

Thus, in this system a very strong resonance phenomenon 1s present for
the surface wave.

Let us now turn to the cylindrical wave ¥, . This wave l1s extracted
from {3.1) witb the ald of the method of stationary phase

ikr
W, =V (9) {}k—r (3.8)
, 20 sinain étf c0s0.1n—e 017 s (ka cos @,) cos (ka cos ¢) —
V(9) = Vo ehitsin < {e“F o0 Lo cos {ka cos @) ¢ cos @

3 3 . . 187
eF cos0.4n e 01" OS2 o 3in o cos? @ sin @k /s

¢F cos0. 143"

sin (ka cos ¢,) sin (ka cos cp)}

vo'/'s
(x =rcosq, y=rsing)

In the case of a single crack the cylindrical wave is determined by For-

mula
o o e’ikr
Wy =V° () Ve 3.9
N . 29 ) . 7 cOS? (o Sin.Qo cos? @ sin gk
Ve (g) = m exp (z 55 ) sin—5- i

We obtain the following expression for the influence function:
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~0.1i7n

cos (ka cos @y) cos (ka cos @) —

etFeos 0.1 — ¢
R, (9) = 2eo1in{

¥ cos 0.4 — ¢

e'F cos 0.1 - 701"
e'F cos 017 - 70317

sin (ka cos @,) sin (ka cos qa)} (3.10)

Since the angle ¢ 1s among the arguments of the influence function, the
character of the directional pattern of the cylindrical wave holding 1n the
case of one crack can be distorted considerably for the cracks. In accordance
with the values of the parameters F and 4@ cos g, not only will resonant
amplification or attenuation of the intensity of the cylindrical radiation
take place, but also the two main lobes of the directional pattern will be
split up.

As an example let us conslder the case when kg cos ¢, =nn . Then

-0.1i%

iF
-—0.2i 01 — e
R — 2 1 n e 0.2in e. €0os '
0 ( ) e'F cos 0.1 — 7037

cos (ka cos ) (3.11)

It 1s clear that in this case each of the two main lobes of the direc-
tional pattern splits up into £(n/cos g,) + 1 smalier lobes (g£(x) denotes
the integral part of x ). It is interesting to note that the cylindrical
radiation does not dissapear for any 5 . The ratio of the amplitude of the
maximum value of the cylindrical wave to the minimum, amounts in this case
to a quantity of the order of 140.

Let us recall that the conclusions of this section hold in the asymptotic
sense for large values of the parameter 7 ., In.case resonant phenomena in
the system which has been described must be investigated for values of F
which cannot be regarded as large (for example, to find the first maximum of
the modulus of an influence function), 1t is necessary to resort to numerical
computations based on Equation (2.14%).
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