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In the propagation of acoustic waves in a half space which is filled with a 
fluid and is covered by an elastic layer, diffraction phenomena arise at 
inhomogeneities of the layer. These phenomena may be amplified in a reso- 
nant manner or attenuated depending on the relative locations of the objects 
causing the diffraction. 

In this paper resonance is examined for the simplest system of the type 
described: the fluid is covered by a homogeneous elastic plate which Is 
divided into three parts by two straight, parallel cracks of infinitesimal 
thickness. The incident disturbance is given in the form of a plane mono- 
chromatic wave. 

In Section 1 a *general" solution (according to the terminology of [l]) 
Is given for the problem of diffraction for any number of defects of arbi- 
trary nature In the plate which are located on parallel stralght lines, The 
diffracted field Is found in Section 2 for the casi! of two cracks and asymp- 
totic simplifications are carried out for low frequencies and large separa- 
tion of the cracks. In Section 3 the resonant character of the diffraction 
phenomena is established for a system of this type. 

Notation 

u - acoustic potential in the c, - velocity of transverse waves in 
fluid plate material 

W - diffracted part of the H - plate thickness 
acoustic potential k - dlmensionless wave number in the 

0 - Poisson's ratio for the fluid (k = =&TX/A) 
plate material 

h - wave length in the fluid 
P - fluid density m- - anmle at which the incident wave 

YY 

PO - density of the plate iloves (measured from the posi- 
material tive direction of the Ox-axis) 

0 - wave velocity in the fluZd 



1. An ideal compressible fluid fills a half space which 1s covered by an 

elastic plate. There are certain number of parallel rectilinear slits In 

the plate. A plane monochromatic wave Is Incident from the depths of the 

fluid; the direction of motion of the wave 1s orthogonal to the direction 

of the slits. It Is required to find the field crested by the wave. 

With a proper choice of coordinate Bxes (Flg.1) this problem Is a two- 

dimensional one. Its mathematical formulation Is as follows [l and 23. 

It Is required to find the solution of the Helmholtz equation 

which Is continuous throughout up to the r-axis. On the x-axis It Is assumed 

that the following boundary condition Is satisfied: 

_ (j li’ alJ (x,0) 
111 4 

0 ay + vok2U (2, 0) = 2 ‘&4,,6(5-1)(x - a,) (1.2) 
,L==l a=1 

6, = 6 (1 - CT) $ , Y,, = 6 (1 - a) s2 

where m Is the number of cracks, a, Is the x-coordinate of the nth crack, 

and a(x) Is the Dlrac delta function. The constants A,, are such that 

Fig. 1 

where 

the boundary-contact relations 

for x+a,+O (n=i,*..,nl) (1.3) 

hold. 

Moreover, the difference U - lJO , 

(ixx - i l/FYFy) 

(x = - k cos qo) (1.4) 

must satisfy the principle of llmltlrlg absorption. The quantities x and 

Y are considered to be dimensionless. The transformation to x and I/ 

from the corresponding dimensional quantities Is accomplished by dividing 

by the thickness x on the plate. 

The boundary condition (1.2) requires explanation inasmuch as the expres- 
sion used for Its right side has not been employed'before. In the formula- 
tion of the correspond1 

7 
problem [2] for a single crack located at x = 0 

the boundary conditions using the notation of the present paper) had the 
form 

LU=O (I # 0) 

The wave field which was found as a result of solving the problem was 
written In the following manner: 
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u=u,+u,-/-w, L( U” + U,) = 0 

a, 

w = L& ah3 + bh2 + ch -t d 
-- 

(a4 - 60k2) U’k’L - h” - iV”k2 
exy (ihx + i y’k2- h”y) dh 

Applying the operator L and U we arrive at Equation 

LU = LW = ibS*‘ (5) - W” (2) - ic6’ (r) + d6 (z) 

which coincides with (1.2) far m = 1 and ai = 0 except for the notation 
of the constants. ’ . 

It Is natural to consider 
at a crack is not altered by 
are Isolated from the crack. 

that the character of the singularity of LU 
the presence of other defects ?.n the plate which 

By direct verification it is easy to demostrate that the solution of the 

problem which has been posed has the following form 

where 
u=u,cu,+w (1.5) 

(I (a) = (~4 - &kZ) Jfk%-- ivok2) (I.61 

w=&J +&-- i A,,&)“-‘exp (ihz + ivrCe - h2y) dh (1.7) 
--xl . ’ n=l S=I 

Here U, represents the wave which is reflected from the plate, w is 

the dlf'fracted field which is caused by the presence of the cracks in the 

plate, 1* is the complex conjugate of 2 . The choice of the branch of 

l(1) is clear from Fig. 2, where the solid line denotes the contour of inte- 

gration and the dashed lines are cuts 

4‘ ImA4 ; A in the complex plane A , The radical 
l I l I 

; 

I/m-_ Is taken as positive on 

the segment of the real axis (-_k,k). 

; 
The numbers it\, (s = 0, 1, 2, 3, 4) 

I 
I ,’ 

are the roots of the function l(h); 
_)A - fi 'J 

I v- w- their distribution is described In [2!. 

-4 I REA Only those roots of 1(X) which lie on 
I the sheet of the Riemann surface which 
I 

-4 
l i 

is considered are depicted in Fig. 2. 

A 
I . It should be noted that the eneral 
I solution 

1.6) and P 
iven by Formulas (1.57, (1.4), 
1.7) Is valid for finding the 

Fig. 2 field In the predence of any dlsturb- 
ancea in the mechanical pro 

P 
ertles of 

the plate at the points x = a (e.g. hinged connections, see [3] , and not 
only for the case of cracks. &he physical behavior at x = a, IS taken into 

account by the boundary-contact conditions. Therefore, before the relations 
(1,3) are introduced, the solution which has been written out ha8 a universal 
character in the sense indicated. 

Conditions (1.3) generate an inhomogeneous system of 4m linear equations 
for finding the 4m unknown constants A,, . On physical grounds It may be 
assumed that this system has a unique solution for any k . Computations 
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will be given below corresponding to the case of two cracks. 

2. We shall denote the distance between the cracks by 2rr (as before, 

the transformation to the dimensionless distance is accomplished by divi- 

ding by fl ) and we shall place the origin of coordinates at the center of 

the segment between the cracks. The expression for the diffracted field has 

the form to 

w = Gi 1 $&?-iaa i A,, (ihy-’ + 
-co S=l 

+ eiah i A,, (iAp] oxp (iL + I/F=-Py) dh (2.1) 

We now split the wave field U and its components V,, II1 and W into 

their symmetric and antisymmetric parts with respect to the variable x 

Ui = Ui’ + lJi_, Ui’ (2, y) = ‘12 [Ui (2, y) It Ui (-- 2, y)l (2.2) 

The problem of finding the diffracted field is thereby divided into two 

problems, one for-each part. Only four constants will occur in each of these 

problems. With this breakdown the components of the field have the form 

Here and in what follows, the upper line in the expressions in braces 

should be used for the symmetric part of the field and the lower line for 

the antlsymmetrlc part. Analogously, in using the double signs the upper 

one refers to the symmetric part of the field, the lower to the antlsymmetric 

part. 

In the process of satisfying the boundary-contact conditions it is neces- 

sary to carry out differentiation under the Integral sign In the expression 

for Wi . After this Is done and u goes to zero, divergent Integrals 

result, the use of which is justified In cl]. 

After some simple computations analogous to those described in [2], it is 

possible to arrive at the system 

(QzicWb,* + Q&z* + (Q&‘a)b,* + 

P,b,* f P&b,* = 0 

Q&x* + (Q,T PA V + Q&3* + (OS ‘f-’ 

P,b,* + P,b,* = 0 
where 
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Here the following abbreviated notation is used 
CO 03 * 

i 
j (A) e&l ciA = lim 

s 
f (h) eikrdh 

-03 r++o _-u) 

(2.5) 

An asymptotic approximation of the solution of the system (2.4) will be 

obtained for kcl. This Inequality serves as the condition for the possibility 

of treating an elastic layer on the surface of the fluid as a plate. There- 

fore, the leading term of the asymptotic expansion of W ln the small para- 

meter k determines to a considerable extent the behavior of the dlffracted 

field when the model Is physically reasonable and for sufficiently small k 

it practically coincides wlth the actual diffracted field. The parameter 0, 

in addition to k , also pfays an essential role in the representation which 

will be obtained below. We remark that the presence In the problem of a 

characteristic linear dimension which is comparable to the wave length fit 

is just this case for the distance between cracks, which presents the great- 

est Interest) does not permit us to consider the asymptotic solution sought 

as a long-wave one in the usual sense. 

where 

f = 2av,‘lr kg/*, a = 6&-‘~~, r = vo-%, VP” - yk’/a> 0 (2.7) 

for FL > T’/* k’ls 

The integrals for p. can be expressed in terms of elementary functions 

with the aid of calculations similar to those described in 121. From these 

we obtain 

P 2n+l (fi=i,2) 

where ws (s = 0, 1, 2, 3, 4) are roots of the equation 
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The choice of the branch of the logarithm Is fixed by the requirements 

0 < Im 1nN < 2n, Re In N > 0 

There Is a Taylor expansion for w, in powers of p!* in the form 

On the basis of Formulas (2.8) and (2.9) It may easliy be concluded that 

pan+, Is expandable In a Taylor serlee in Integral powers of @ and that pn 
is expressible In the form of a specific expansion in which Ink and powers 

of zi5 occur. 

The actual compsltatlona lead to the result 

$43 = +- + 0 (k2), p5 = 0 (W 

P 2% 
= + (1 - exp f*/, ni (2n - 3)1)-” + ~(~j~) (n = i, 2,s) (2.10) 

From (2.10) and homogeneous equalltlea of the system (2.4) It Is easy to 

ascertain that the constants b,f, bei are of high order ln k and do not 

contribute to the first term of the asymptotic representation for W . In 
this sense the system (2.4) may be reduced and, taking account of the obvious 

asymptotic slmpllflcatlons of the right-hand sides, we may rewrite it ln the 

form 

(2.11) 

We deform the contour of Integration for pm Into a loop which surrounds 

the upper branch cut and reduce the integral along this entire path to one, 

on only the right edge of the cut. If account Is taken of the residues at 

the poles u,, vI - p4 which are crossed as the contour Is deformed it Is 
easy to obtain expression for gn which does not contain a divergent lnteg- 

ral and which 1s convenient for finding the necessary asymptotic represen- 

tations. 
12.121 

The form of the asymptotic 

magnitude of the parameter y 

@=2,3,4,5,6) . ._ 

representation for g, depends strongly on. the 

. 

By virtue of the fact that the relation 
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to a single crack, as solved In [ 23. The ratio of two corresponding ele- 

ments of the wave field for the present problem and the problem with one 

crack wfllbe called an “Influence function” and will be denoted by I) . 

An Influence function shows how the presence of the second crack affects 

the amplitude and phase of the corresponding wave phenomenon. 

In what follows, the expression for the diffracted field will be taken as 

The direct surface wave W, is extracted from (3.1) by taking the residue 

of the lntegrand at 1 = IO . After some calculations we have 

W = _ 2ei(O.l7+0.5F) sin h 
,iF _ e-0.2in 

+ 5 ,iF cosC.l~- e-O.sin 
cos xa $ 

(3.2) 

The expression for the direct surface wave W+o In the case of a single 

crack can be written in the form [2] 

w + 0 = _ 2e-~.2in sin 5 COS’ Cpo sin Wk”’ 
5 vo’l 

eih.x-A,y (3.3) 

Comparing Equations (3.2) and (3.3) we arrive at the following expression 

for the influence function for the direct surface wave: 

R+ = ,+(0.5F+o.m) 

f 

,iF _ e-o.2in 

me 
iF cosO.ln _ e-o.9irr cos tka cos @) - 

,iF + e-~.2ix 
- 

eiF cos0.h + e-o.3’” 
- i sin (kn cos cpo) 

As is apparent from (3.4), the function R, depends periodically on two 

argument 8 : the distance between cracks measured In wave lengths of the 

flexural wave (the parameter F ) and the phase difference of the incident 

wave at the left and right cracks (the parameter ka cos cp~ ). As a result 

of this, the absolute value of R+ undergoes considerable oscillation. 

As an Illustration let us examine the case when the phase shift of the 

Incident wave between the cracks is negligibly small or else Is a multiple 

of m 

Then 
ka cos ‘p. = 2sn 

f(+ = &(o.sF+o.lrr) eiF _ e-o.2in 

eiF cos0.h - eQ.3in 
(3.5) 
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and A+ goes to zero for F = -0,2n+ &IT . 

Let us denote the dimensionless length of the flexural wave by 1, . &I 

D.P. Kmrov 

the approximation under study it has been found that for 

2n 1 __=n--_ 
IO 10 

(ka COSC~O= 2sr~, n, s are integers) (3.6) 

the direct surface wave disapears completely. It is curious that quenching 
of t:le direct surface wave is obtained for a nonintegral number of flexural 

waves (71 - 0.1) distributed In the interval between cracks. 

The modulus of the Influence function A, attains Its maximum near points 

where the modulus of the denominator is smallest. This maximum Is approxi- 
mately equal to seven. In other words, the presence of the second crack when 

?&.$n_ 3 
10 20 

(ka coscpo = 2s~; n, s are integers) (3.7) 

causes an approximately sevenfold amplification in the amplit-ude of the di- 

rect surface wave, 

Thus, in this system a very strong resonance phenomenon is present for 

the surface wave. 

Let us now turn to the cylindrical wave We . This wave is extracted 

from (3.1) with the aid of the method of stationary phase 

(3.8) 

w cos~,~Jt_e-o.li;' 

V (cp) =& e'l+sin -> {~iFeosD~In_~_O."~ cos (ka co.9 CpD} cos (ka cos cp) - 

etFcosO.ln+e-*'~i" 

- &F coso.ln+e-~~3~~ 

sin pa cos cp0) sin (ka cosrp)} COs~~osin~~~2~ sin Tkx"iS 

(z=rcos(p, y=rsincp) 

In the case of a single crack tbe cylindrical wave Is determined by Far- 

mula 
,iki’ 

w,o = v” w l/kr (3.9) 

V” (9) = 1o -oxp ji -$-n. ) sin+ 
cos2 cposin.q~cos~ cpsin cpk'% 

Jfzn 
vu',‘ 

We obtain the following expression for the influence function: 
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R, (cp) = 2e-0.2fn 
,*F cos 0.1~ _ e-o~l*x 

fF cos o.ln _ e_,,3f~ ‘OS tka ‘OS %I) ‘OS tka ‘OS @ - 
e 

efF cos 0.h + eeo.lfn - 
eiF cos O.ln + e-".3ix 

sin (ka coscp,) sin (ka COScp)} (3. IO} 

Since the angle cp Is among the arguments of the Influence function, the 

character of the directional pattern of the cylindrical wave holding in the 

case of one crack can be distorted considerably for the cracks. In accordance 

with the values of the parameters F and k0 cos (p,, not only will resonant 

ampllflcatlon or attenuation of the Intensity of the cylindrical radiation 

take place, but also the two main lobes of the directional pattern will be 

split up, 

As an example let us consider the case when ka cos (PO =nn . Then 

R, = 2 (_ 1)” p2fn e;; ;;; ;::; I ::+;:I: cos (ka cos cp) (3.11) 
e 

It Is clear that In this case each of the two main lobes of the dlrec- 

tlonal pattern splits up Into E(n/cos m,,) + 1 smalier lobes (E(x) denotes 

the Integral part of x ). It Is interesting to note that the cylindrical 

radiation does not dlssapear for any F . 'Ihe ratio of the amplitude of the 

maximum value of the cylindrical wave to the minimum, amounts In this case 

to a quantity of the order of 140. 

Let us recall that the conclusions of this section hold In the asymptotic 

sense for large values of the parameter F , In-case resonant phenomena In 

the system which has been described must be Investigated for values of F 

which cannot be regarded as large (for example, to find the flrstmaxlmum of 

the modulus of an Influence function), It Is necessary to resort to numerical 

computations based on Equation (2.14). 
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